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Abstract. A class of exact plane symmetric solutions of the Brans-Dicke vacuum field
equations is obtained. This class, in the limit w - 0, is found to agree with Taub’s class of
solutions. It has been observed that the non-static solution belonging to this class represents
a plane-fronted wave.

1. Introduction

Brans and Dicke (1961) have proposed a theory of gravitation (known as the Brans—
Dicke, BD, theory) by introducing a long-range scalar field to modify Einstein’s theory
insuch a way as to make it more compatible with the requirements of Mach’s principle.
Itiswell known that this theory can have two alternative mathematical representations.
Inone representation of the theory, usually known as the canonical representation, the
field equations are
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Whe.re the parameter w is a dimensionless constant. Indices following a comma or
semicolon denote partial or covariant differentiations, respectively. The other rep-
fesentation of the theory, known as Dicke’s representation (Dicke 1962), is obtained
ffom the canonical representation by a unit transformation, where the units of length,
tme and reciprocal mass are changed by a scale factor, so that

1o
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where A is a function of ¢ and ¢ is taken to be the constant G, (the Newtonian

Fevtational constant), In this representation the field equations are

Ry~1Rg; = —87G, Ty~ 32w +3)(A,A; —18;A L A™) 4)
and
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where A=In(¢/¢) and a colon followed by an index represents a covariant differentiy.
tion with respect to Z,;. Though physically equivalent, these forms have their indiviug]
significance in view of convenience in mathematical calculations. As a matter of ;
one always finds the canonical representation to be convenient in the study of gy,
equations of motion in the BD theory, whereas Dicke’s representation is convenepi
the discussion of the phenomena of scalar waves (Dicke 1964). However, the fiig
equations in both cases agree with Einstein’s field equations when w - and ¢ G;!
In pursuing the study of the BD theory it has been common practice to °°mParetl;e
results of this theory with those of Einstein’s theory under similar conditions, to find gy
the influence of the ¢-field, if any. With this objective, the problem of finding an exagt
plane symmetric solution to the BD vacuum field equations has been taken up. Itiswe
known in Einstein’s theory that no non-static vacuum solution exists exhibiting either
spherical symmetry (Birkhoff’s theorem) or plane symmetry (Taub 1951). However, it
was observed by Reddy (1973) that only for a static scalar field is the Birkhoff theorem
true in the BD theory. This suggests that the time dependence of the scalar field and the
metric tensor go together in this case. So far, however, no such exact solution has been
obtained. In the present paper, while investigating the plane symmetric BD vacuum
fields, a class of exact solutions has been obtained which contains a non-static solution,
The method of obtaining the solutions, as illustrated in § 3, is such that it naturally leads
us to discuss the cases discussed by Taub (1951). Hence, comparison between our class
of solutions with those of Taub is conveniently made. Moreover, the existence of a
non-static solution shows a possibility of realizing plane gravitational waves in the BD
theory. To study this aspect of the solution, we have transformed it by using the unit
transformation (3) so that the transformed solution satisfies the field equations (4) and
(5) in Dicke’s representation. It is observed that this solution represents an expansion-
free radiation field of Petrov type O, and hence, a plane-fronted wave (Kundt 1961). It
should, however, be mentioned that the energy transport by such waves can be studied
in view of the conservation laws in the BD theory (Nutku 1969, Lee 1974). In fact, this
part of the investigation is still under progress and will shortly be communicated.

2. The field equations

The plane symmetric metric of Taub (1951) is given as
(ds)* =e**(dr* —dx?) —e*(dy*+dz?) Q)

where u and v are functions of x and ¢ only. The BD field equations (1) and (2 with
respect to the metric (6) are

Riu=ug =g+ 2(0+ 07— 04— 0 U1) = —:ﬁw—zd’,zl —Z(d’,n ~ 14,1~ Uads) 0
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Gaa— D117 2016,1+2040 =0 (11)
where mdlceS 4 and 1 after a comma denote partial diﬁerentiation with res;Sect to t and
p ively. In our analysis we refer to the set of equations (7), (8), (9) and (10) as
(4)

3, Sotutions of the field equations

On multiplying equation (11) by e we get’
9 2v 9 2v
at ox =0 12
at(¢.4 € ) ox (¢1 e ) 0 ( )
Equation (8), on multiplying by ¢ e** on both sides, reduces to

8y2 ) 2oL ) =0 | (13)

From (12) and (13) on adding, we get
82 . 82 .
?(tb e’ —5;2(4" e*)=0 (14)

which has a plane-wave solution:
pe=f(x+t)+g(x—1) (15)

where f and g are arbitrary functions of the variables indicated.
Now let us consider another plane symmetric metric

(ds)*=e?*(d>—dx?) —e*(dy*+dz?) (16)
Where u and y are functions of x and . The component Ry, = R;; =0 of Einstein’s
vacum field equations correspondmg to the metric (16) (we refer to this set of
equations as B) suggests that e *X behaves like a plane wave (Taub 1951). This leads us
10 identify ¢ e* in (15) with e, so that

pe¥=eX=f(x+1)+g(x—1). : (17)
By defining an auxiliary function w as

¢ =" (18)
¥e get from (17)

2x=w+2v=In(f+g). (19)



372 R N Tiwari and B K Nayak
Now, eliminating X.from the set of gquations (B) in terms of w and v in view of (19), we
arrive at the following set of equations (to be referred to as C): !
Ryu=up—usu+2(v,+ 0.21 — VU4V U)

= =W WA 2W 0 F Wl T W, 2
Ry =Ry3=04—01;+2(0%—07%)
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Ru=Uq— Uy +2(04a+0%— 01U~ 04u,)
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=W T3Wa— 2W,4U‘4 + Wil + Wal s (22)
and '

R14=2(0,14+0104— 001~V 1Uy4)
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This set of equations (C) is identical to the set of equations (A) if the following set of
relationships, (to be referred to as D), is true:

(W.44—W,11)+[W.24_W.21+2(U,4W.4"U,1W,1)]=0 29

(@+)Wa=204w, (2

(@+3)wh= 20w, {26)
and

(@ +';')W.1 Wa=W 0,4+Wa0,. 2n

It can easily be seen that (24) is the wave equation (11). This leads to the conclusion that
the set of equations (A) with (11) is fully identical to the set of equations (C) with (24)
when equations (25), (26) and (27) are satisfied. But equations (25), (26) and (27)
suggest that v is a function of w such that

v=32w+1w.

From (19} we obtain

= - (28)
w P In(f+g)
and therefore
_i“’_tl_ (29
b 22w +3) In(f+g).

Thus the u solution of equations (B) along with (28) and (29) will constitute the spluﬁOU
of equations (A) and (11). That s, the solution of the BD field equations (we callitS)is

u=-iIn(f+g)+n(x+1)+x(x—1) G0
b=e" =(f+g)2/(2w+3) ’ 31)
and
2w+l &)
P w3 e

where 7 and « are arbitrary functions of the variables indicated.



Plane symmetric solutions in Brans—Dicke theory 373

* ince the set of equations (B) is equivalent to (A) through (C) and under the
von (D), the relations between f, g, 1 and « are the same as obtained by Taub
1951) and thus lead to the same three cases as discussed by him (Taub 1951). We now
solution (S) i.e. equations (30), (31) and (32) under these cases in the same order
« done by Taub (1951). )
Jtcaneasily be verified that for case I, the values of ¢ and v from equations (27) and
(16) become constant and the metric reduces to

(ds)?=e*""(dt?* —dx?) - (dy*+dz?) (33)

vhich can be transformed to a flat metric by using Taub’s transformation for this case.
for case I, the solution (§) from equations (30), (31) and (32) reduces to

u=—3lng+n+ilng+c, (34)
w=2w+3lng (35)
and
20+1
v —m In g (36)
Thus the metric is
(ds)? = e*"g' /N g(df* —dx?) — (g)®**®*I(dy? +dz?). (37

Defining the transformations analogous to Taub (1951) as

1+ Yl + Y4= [g(x _ t)]—(Zw—l)/[2(2w+3)]

and
2020+3)
2w-1

ad applying these to equation (37) we get the transformed metric
(A= (1‘ +Yls Y43+ /Ce= (g y4)2 —(dY )2 - (dY?)? - (d Y3 (38)
which is conformally flat. From equation (35), the BD scalar ¢ is

b=e”=(g)/C I = (1+ Y + Y4 D, (39)

For case I, the solution (S) can be transformed to a completely static solution by using
the transformation used by Taub for this case. Then the metric (6) and the scalar ¢ are
gven, respectively, as

x+t .
Yl_ Y4 = J’ eZn(x+t) d(x + t)
0

(ds)2=7(1\1)[(dX4)2—(dX1)2]—(1+kX 1w+ 1)/ @a+3 (X 22 1 (dX )] (40)

1+kX
ad
& =(1+kX 1Y@+, 41
4. Conclusions

Her .
u:i:e have ol?tamed a class of exact solutions which goes over to Taub’s class of
1S 10 the limit when @ - 0. It is interesting to note that our class of solutions
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contains a non-static solution, unlike its counterpart in Einstein’s theory. Qur discus
sion in this section will be confined to this non-static solution only.

The interesting feature of the solution is related to its wave character, "This ;
revealed when we transform this solution (38) and (39) by making the unit transfo s

N A A Ting.
tion (3), so that it satisfies the vacuum field equation in Dicke’s representation, namely

ﬁ@ = — ((!) +%)A'0A,b (42)
and

An=0. 43
1t may be noted that the BD vacuum fields with null A will possess a congruence of nyj]
curves with tangent vector I° = §*° A , which will be necessarily geodetic (Pirani 1964)
twist-free (%l[a:,,]l‘“" =0) and expansion-free (from equation 43 such that [%=(), Iy
other words, the BD vacuum fields with null scalar A are equivalent to the fields witha

normal (twist-free), non-expanding congruence of null geodesics with tangent vector
I° = g*® A, satisfying the field equations

Ru=—(0+3)ll,

This suggests that for o= —3 the BD vacuum fields with null scalar field A are
expansion-free radiation fields (Kundt 1961). However, it should be mentioned here
that the null congruence with such fields will be distortion-free also. The transformed
form of our solution (38) and (39), by unit transformation (3), is characterized by the
metric '

(ds)?=(1+ Y+ Y*) 2@/ oD y42 —(d Y2~ (d Y2 - (d Y*)*] (44)
and the scalar ’

¢=(1+Y'+YH e 43)
such that

A=ln¢=— In(1+ Y'+Y%).

4
QRo-1)

This solution satisfies the field equations (42) and (43). It can be easily verified that A
for our solution is a null field of the space time (44). Hence this solution represents &l
expansion-free radiation field. Moreover, the conformal flatness of the space tmé
suggests this field to be of Petrov type O. So, in view of the theorem due t0 Kund!
(1961) that plane-fronted waves are non-expanding radiation fields of type NorO,t8
concluded that our solution represents a plane-fronted wave.
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