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A: Math. Gen., Vol. 9, No. 3. 1976. Printed in Great Britain. @ 1976 
I. pbvt 
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Abs&act. A class of exact plane symmetric solutions of the Brans-Dicke vacuum field 
equations is obtained. This class, in the limit o + a, is found to agree with Taub’s class of 
solutions. It has been observed that the non-static solution belonging to this class represents 
a plane-fronted wave. 

1. Introduction 

Brans and Dicke (1961) have proposed a theory of gravitation (known as the Brans- 
Dicke, BD, theory) by introducing a long-range scalar field to modify Einstein’s theory 
msucha way as to make it more compatible with the requirements of Mach’s principle. 
It iswell known that this theory can have two alternative mathematical representations. 
Inone representation of the theory, usually known as the canonical representation, the 
field equations are 

877 0 1 R..-&. = --T.. -- 2(4,i+,j - igi]4.kVk) --(+;ij  - Si]+$ (1) 
I’ 4 ‘I 4 4 I1 

and 

fiere the parameter 0 is a dimensionless constant. Indices following a comma or 
semicolon denote partial or covariant differentiations, respectively. The other rep- 
rentation of the theory, known as Dicke’s representation (Dicke 1962), is obtained 
ffOm the canonical representation by a unit transformation, where the units of length, 
b e  and reciprocal mass are changed by a scale factor, so that 

’herer\ is a function of 4 and & is taken to be the constant GO (the Newtonian 
gravitational constant). In this representation the field equations are 

and 

gij = A-’gij ,  m7 4 =A& (3) 

Rij-sRgij - 1 -  = -8~Gozj -4(20 + 3)(h,iA,j -4gijA,,Ak) 

- 

(4) 
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where A =ln(4/&) and a colon followed by an index represents a covariant 
tion with respect to &,. Though physically equivalent, these forms have theirin- 
significance in view of convenience in mathematical calculations. As a matter ,,f 

eq~ations of motion in the BD theory, whereas Dicke'siepresentation is mnveniemh 
the discussion of the phenomena of scalar waves (Dicke 1964). However, the 
equations in both cases agree with Einstein's field equations when o + 00 and 4 4 G;I. 

In pursuing the study of the BD theory it has been common practice to mmpueh 
results of this theory with those of Einstein's theory under similar conditions, to&dom 
the influence of the #-field, if any. With this objective, the problem of findingm em 
plane symmetric solution to the BD vacuum field equations has been taken up. Itkwd 
known in Einstein's theory that no non-static vacuum solution exists exhibiting either 
spherical symmetry (Birkhoff's theorem) or plane symmetry (Taub 1951). However,it 
was observed by Reddy (1973) that only for a static scalar field is the Birkhoff thmrem 
true in the BD theory. This suggests that the time dependence of the scalar field 
metric tensor go together in this case. So far, however, no such exact solution has been 
obtained. In the present paper, while investigating the plane symmetric BD va" 
fields, a class of exact solutions has been obtained which contains a non-static solution. 
The method of obtaining the solutions, as illustrated in § 3, is such that it naturallylea& 
us to discuss the cases discussed by Taub (195 1). Hence, comparison between ourclas 
of solutions with those of Taub is conveniently made. Moreover, the existence of a 
non-static solution shows a possibility of realizing plane gravitational waves in the BD 
theory. To study this aspect of the solution, we have transformed it by using the unit 
transformation (3) so that the transformed solution satisfies the field equations (4) arid 
(5 )  in Dicke's representation. It is observed that this solution represents an expansion- 
free radiation field of Petrov type 0, and hence, a plane-fronted wave (Kundt 1961). It 
should, however, be mentioned that the energy transport by such waves can be studied 
in view of the conservation laws in the BD theory (Nutku 1969, Lee 1974). In fa &this 
part of the investigation is still under progress and will shortly be communicated. 
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one always finds the canonical representation to be convenient in the study of aq the 

2. The field equations 

The plane symmetric metric of Taub (195 1) is given as 

(ds)' =e2u(dt2-dx2)-e2v(dy2+dz2)  

where U and o are functions of x and t only. The BD field equations (1) and (2) with 
respect to the metric (6) are 
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apd 
4.44- 4.11 - 2V.14J f2044.4 = 0 (11) 

4 and 1 after a comma denote partial differentiation with respect to t and 
r&ely. In our analysis we refer to the set of equations (7), ($), (9) and (10) as 
(A). 

3. wns of the field equations 

00 multiplying equation (1 1) by e’’ we get 

a a 
at ax  -(+,4 e’’) e”) = 0. 

@ation (8), on multiplying by 4 e’’ on both sides, reduces to 

-(e a a  e’’) -&(e e’’) = 0. 
at at 

From (12) and (13) on adding, we get 

which has a plane-wave solution: 

4 e’’ = f ( x  + t )  + g(x - t )  (15) 

where f and g are arbitrary functions of the variables indicated. 
Now let us consider another plane symmetric metric 

(ds)2=e2U(dt2-dx2)-e2X(dy2+d.z2) (16) 

where U and x are functions of x and t. The component Rz2 = R33 = 0 of Einstein’s 
v a ~ u m  field equations corresponding to the metric (16) (we refer to this set of 
@WtionS as B) suggests that eZx behaves like a plane wave (Taub 1951). This leads us 
to identify 4 e’’ in (15) with e”, so that 

(17) 4 e’’ = ,2x - - f ( x  + t )  +g(x - f). 
By defining an auxiliary function-w as 

We get from (1 7) 

2x = w + 2v = ln(f + g). (19) 
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1 2  
= - - . 44 -ZW,4-2W,4U,4+W, lU,1+  W,4U,4 

and 

It can easily be seen that (24) is the wave equation (1 1). This leads to the conclusion that 
the set of equations (A) with (1 1) is fully identical to the set of equations (C) with (24) 
when equations (25), (26) and (27) are satisfied. But equations (23 ,  (26) and (27) 
suggest that is a function of w such that 

u=i(2w+l)w. 
From (19) we obtain 

and therefore 

2 0 + l  
U =  Mf + 8). 2(20 + 3) 

(29) 

Thus the U solution of equations (B) along with (28) and (29) will constitute thesolution 
of equations (A) and (1 1). That is, the solution of the BD field equations (we 

1 (30) U = -5 In(f+g)+q(x + t )  + K ( X  -t) 
4 = ew = (f + g) 2/(2w+3) (31) 

and 
20+1 

U =  w + s >  - 2(2w + 3) 
(32) 

where q and K are arbitrary functions of the variables indicated. 
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&e set of equations (B) is equivalent to (A) through (C) and under the 
4 0 0  @), the relations between f, g, g and K are the same as obtained by Taub 
(lM1)aad thus lead to the same three cases as discussed by him (Taub 1951). We now 
wwlution (S) i.e. equations (301, (31) and (32) under these cases in the same order 
sshsbyTaub (1951). 

I t aa i lybe  verified that for case I, the values of 4 and v from equations (27) and 
(ZS) "e constant and the metric reduces to 

(ds)2 = e2("+x)(dt2-dx2)-(dy2+dz2) (33) 

u = -a In g + q  ++In g'+ c1  

be transformed to a flat metric by using Taub's transformation for this case. 
~m II, the solution ( S )  from equations (30), (31) and (32) reduces to 

(34) 

2w+l 
2(20 +3) In g' V =  

'bus the metric is 

(dS)2 = e2"g'/Jg(dt2 - dx2) - (g)(20+1)/(20+3) (dy2+dz2). 

1 + y' + y4 = [& - t)]-(20-')/[2(20+3)1 

(37) 
Defining the transformations analogous to Taub (195 1) as 

and 

and applying these to equation (37) we get the transformed metric 
(&)2=(1+ y'+ y4)-2(20+1)/(2~-1) [(d Y4)2 - (d Y ' ) 2  - (d Y2)'- (d Y')'] 

~ C h k  conformally flat. From equation (35), the BD scalar I$ is 

Form 111, the solution (S) can be transformed to a completely static solution by using 
?transformation used by Tadb for this case. Then the metric (6) and the scalar I$ are 
D'en, respectively, as 

(ds)t- [(dX4)2-(dX1)2]-(l + ,l&')(2"+1)/(2"c3) [(dX2)2 + (dX3I2] (40) 

and 

138) 

(39) 6 = ew = (g)2/(20+3) = (1 + yl+ y4)--4/(2~--1) 

--) 

(41) ,#, = (1 + kx 1)2/(20+3) 
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contains a non-static solution, unlike its counterpart in Einstein's theory. our disas 
sion in- this section will be confined to this non-static solution only. 

me interesting feature of the solution is related to its wave character. xir 
revealed when we transform this solution (38) and (39) by making the unit 
tion (31, so that it satisfies the vacuum field equation in Dickeys representation,nameb , 

It may be noted that the BD vacuum fields with null A will possess a angrueneofnd 
curves with tangent vector 1 a = g*A,, which will be necessarily geodetic (pirani 1 ~ 1 ,  
twist-free &ca:b31a:b = 0) and expansion-free (from equation 43 such that Iaa=o). I,., 
other words, the BD vacuum fields with null scalar A are equivalent to the fields wi& a 
normal (twist-free), non-expanding congruence of null geodesics with tangent V- 
I" = g*A,b satisfying the field equations 

g& = -(U +z)l,al,b. 

This suggests that for 03 -$ the BD vacuum fields with null scalar field A are 
expansion-free radiation fields (Kundt 196 1). However, it should be mentioned here 
that the null congruence with such fields will be distortion-free also. The transformed 
form of our solution (38) and (39), by unit transformation (3), is characterized by the 
metric 

and the scalar 

such that 

This solution satisfies the field equations (42) and (43). It can be easily verified thatA 
for our solution is a null field of the space time (44). Hence this solution representsao 
expansion-free radiation field. Moreover, the conformal flatness of the space time(@) 
suggests this field to be of Petrov type 0. So, in view of the theorem due to KUdt 
(1961) that plane-fronted waves are non-expanding radiation fields of type Norojit is 
concluded that our solution represents a plane-fronted wave. 
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